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Abstract

This project focuses on developing a neural network ar-
chitecture, which has embedded a non-linear least squares
(NL-LS) optimization problem in its core. This means that
gradients are being back-propagated from the output of this
NL-LS problem to its input. The architecture is based on the
work from Tang, et al [19] and it is extended using ideas
from Lv et al. [16]. The main focus of this work is to pro-
vide a working, trainable implementation of a differentiable
bundle adjustment layer. Extensions to [19] are suggested
to improve pose estimation accuracy via modifications in
the CNN based feature network, the damping factor esti-
mation layer, and an additional subnetwork for the camera
pose initialization.

1. Introduction

Computer Vision is increasingly gaining attention and
importance both in the research community and in indus-
try, both for providing sensing and localization functionali-
ties to robotic systems. In particular, Structure from Motion
(SfM) is the problem of estimating the 3D structure of the
environment, given a 2D image sequence. Structure from
Motion can be tackled by employing conventional meth-
ods that jointly optimize the environment structure, and the
camera motion, using Bundle-Adjustment (BA) algorithms.
Bundle Adjustment ([21], [1]) is a method to find 3D point
positions and camera motion by minimizing the reprojec-
tion error. The optimization is a non-linear least squares
problem that can be tackled by the use of the Levenberg-
Marquardt (LM) algorithm [17].

Lately, new efforts have been made in the research com-
munity to tackle the problem of estimating the depth and
the camera motion from images using Convolution Neural
Networks (CNNs) [7, 6, 15, 22]. However, in contrast to
BA, these approaches do not enforce geometric constraints
on the structure of the scene and the camera motion.

Recent works combine depth and camera pose estima-

tion from CNNs with BA [3]. The primal work BA-Net [19]
formulates BA as a differentiable layer to enable end-to-end
training of a neural network that predicts the camera motion
and the per pixel depth of each frame using BA.

Even though, BA-Net is an important step towards
combining CNNs with traditional optimization based tech-
niques, there is no working source code available. In our
project, we want to address this issue and reimplement BA-
Net in pytorch to provide a baseline implementation. We
originally intended to exactly reproduce the original results
of BA-Net. However, this turned out to be more challeng-
ing than expected. First, the BA-Net paper does not provide
all relevant details for reproducing the results. For example,
the description of the data sampling lacks important infor-
mation such as the threshold for the photo-consistency fil-
tering, which prevented us from even reproducing the val-
idation set, or training details such as batch size and the
number of training iterations. Second, the source code pro-
vided by the authors of BA-Net is incomplete (the training
setup and the data sampling is missing) and it contradicts
the description in the paper (see Section 4.3). To address
these issues, we designed our implementation in a config-
urable way to cover the different variants and unknown pa-
rameters. Also, we unit-tested the helper functions and the
bundle adjustment code to avoid bugs. However, we en-
countered a very unstable training and the sheer amount of
possible configurations as well as the long training time and
the downtime of the Leonhard cluster prevented us from
finding the reason in the complete setup. So, we narrowed
down the scope of this project and focused on the training
of the feature network and the differentiable bundle adjust-
ment for the camera pose estimation.

The contributions of our project summarize as follows:

• We provide working pytorch implementations of all
neural network components of BA-Net associated with
camera motion estimation, most importantly including
the differentiable BA layer.

• We introduce ideas from the paper ”Taking a Deeper
Look at the Inverse Compositional Algorithm” [16]
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into our implementation that improve convergence and
result in a better camera pose estimation. Specifically,
we have implemented an improved damping factor es-
timation layer (see Section 4.4) and have demonstrated
the effectiveness of a simplified multi-resolution fea-
ture net (see Section 4.5).

• We propose a Pose Initialization Network that learns to
provide a good initialization for the bundle adjustment
layer to further improve camera pose estimation (see
Section 4.6).

2. Related Work
Recent works have studied estimating the 3D structure

of the environment given images from the same scene using
CNNs. In particular, Hand et al. [12] estimated the camera
motion with a network from 2 images with known ground
truth depth maps. Zhou et al. [27] used two CNNs, one
for depth and camera motion estimation. Both networks
were trained together with a photometric loss minimization
in an unsupervised manner. More recently, the work from
Clark et al. [3] solved the nonlinear least square problem in
a binocular SfM setting, using an LSTM-RNN ([13]) as the
optimization method.

BA-Net [19] bridges the classic white-box methods in
computer vision with recent deep learning approaches by
implementing BA as a differentiable optimization layer. A
Multi Layer Perceptron (MLP) predicts the the damping
factor for the LM algorithm, and a minimization of the
feature-metric error between aligned CNN feature maps is
performed. With an end-to-end trainable model, the feature
extraction networks are able to learn appropriate features
via backpropagation through the BA layer.

Lv et al. [16] proposed a combination of optimization
and learning-based approaches as a variant of the original
Lucas-Kanade image registration method, by training a gen-
eral parametrized feed-forward model end-to-end. This al-
gorithm incorporates knowledge about the geometry of the
problem and enables a robust iterative estimation.

DeepSFM from Wei et al. [24] also aims to incorporate
multi-view geometric constraints in a deep learning frame-
work, but their method does not include restrictions on the
number of LM iterations, and also their architecture is fully
physical driven and suffers less from over-fitting issues. Shi
et al. [18] also formulates the differentiable BA as a feature-
metric layer, but with CNN input features from multiple
images, optimizing structure and motion using a feature-
metric error in a self-supervised fashion. DeepV2D from
Tedd et al. [20] shares similarities with BA-Net, by also
combining deep learning and multi-view geometry, but in-
stead of performing only one nonlinear optimization con-
sidering all variables, decomposes the joint optimization
into multiple smaller sub-problems. This decomposition of

the problem makes the model more expressive since it is
possible to optimize over per-pixel depth, and there is no
constraints related to the use of depth basis maps (as in [19])
that could limit the accuracy of the depth estimate.

3. Methods
Our method is a re-implementation of BA-Net [19], a

feature metric bundle adjustment network that implements
a differentiable Levenberg-Marquardt (LM) [17] layer for
nonlinear least squares optimization. This differentiable
LM layer enables end-to-end training of the network to
learn features and depth maps in a way that is beneficial
for solving the SfM problem.

3.1. Bundle Adjustment (BA)

BA is a technique for jointly refining pose and depth
estimations over a series of camera views. The op-
timization variables are defined as camera poses T =
{Ti|i = 1, . . . , Ni}, and scene point coordinates P =
{pj |j = 1, . . . , Nj}, which are joinly represented as X =
[T1, T2, . . . , TNi

, p1, . . . , pNj
]. The optimization problem

seeks to minimize a cost function of the form

X ∗ = argmin

Ni∑
i=1

Nj∑
j=1

‖ei,j(X )‖ (1)

where ei,j(X ) is the euclidean reprojection error in the
case of sparse BA, or the photometric error in the case of
dense or direct BA methods. In order to minimize this prob-
lem, the LM algorithm is typically used. At each iteration
the optimal step is chosen by minimizing following equa-
tion with a regularization factor λ:

∆X ∗ = argmin‖J (X )∆X+E (X )‖+λ‖D(X )∆X‖ (2)

Here, J (X) is the jacobian of the residual E (X) =
[e1,1(X ), e1,2(X ), . . . , eNi,Nj (X )] with respect to X and
D is the element-wise square root of the diagonal entries
of the approximated Hessian J (X )T J (X ). Note that the
definition of E (X ) is problem dependent. Our derivation of
both can be found in Appendix A. Once the residuals and
Jacobian have been computed, the optimization step from
equation 2 can be solved in closed form:

∆X = (J (X )T J (X ) + λD(X ))−1J (X )TE (X ) (3)

After the optimal updates are determined, the solution of
the k -th iteration can be found as:

Xk = ∆X ◦ Xk−1 (4)

Dense methods [8, 5, 9] have yielded promising results
while largely solving the challenges of sparse methods by
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Figure 1: BA-Net Architecture diagram from original pa-
per [19]

introducing a photometric loss that removes the need for
feature matching. The error terms of the photometric loss
are defined as:

efi,j(X ) = Ii(π(Ti, dj · qj))− I1(qi,j) (5)

where dj ∈ D = {dj |j = 1, . . . , Nj} is the depth of a
pixel qj in the image I1 and dj · qj converts it to its 3D co-
ordinate. Thus the photometric BA optimization parameter
vector is X = [T1, T2, . . . , TNi

, d1, . . . , dNj
].

Direct methods have their own disadvantages. Most im-
portantly, proper initialization becomes crucial as the pho-
tometric loss is highly non-convex, thus, not suitable for
larger image baselines.

3.2. BA-Net Architecture

The BA-Net architecture consists of two major steps:
feature map and depth map generation, then bundle adjust-
ment. The feature maps and depth map generators both
share a pretrained DRN [26] backbone encoder with a few
modifications described in [19]. The original BA-Net archi-
tecture can be seen in Figure 1.

In BA-Net, feature maps are generated by a multi-scale
hierarchy of convolutional network layers that extract fea-
tures corresponding to different scale levels. This multi-
scale approach is similar to direct methods and enables op-
timization of the camera poses at coarse and fine scales.
Coarser layers increase the convergence radius of the BA,
while finer layers increase the final accuracy of the con-
verged solution. Each pyramid level is obtained from the
corresponding DRN layer and the upsampled previous pyra-
mid level. A convolutional filter is applied to reduce the
dimension to the final feature maps to 128 channels.

Depth values are given special treatment in the BA-Net
architecture. Per-pixel depth would be computationally in-
tractable and hugely increase the number of parameters that
must be learned. Instead, Tang et. al. implement a ba-
sis depth map method where the BA optimizes a linear
combination of a set of basis depth images. These basis
depth maps are generated from a convolutional network for
monocular depth estimation. As is typical in monocular

depth estimation, an encoder-decoder network is used to
predict depth maps. BA-Net uses DRN as the encoder, in
order to share the feature pyramid backbone with the depth
prediction network, and a modified version of FCRN [15]
with 128 output features (basis depth maps) as depth de-
coder. The final depth map is a linear combination of these
depth maps:

D = ReLU(wTB) (6)

Where D is the final depth map for the pixels of the first
camera, B is a 128 channel image where each channel rep-
resents a basis depth map, and w is the coordinate vector
optimized by the BA layer.

The novel contribution of Tang et. al. is the differen-
tiable Bundle Adjustment layer that implements a differen-
tiable nonlinear least squares optimizer. The goal of BA-
Net is to use features that are trained via backpropagation
rather than features that are pretrained for other problems
and re-used. In order to backpropagate the gradients from
the final output loss to all of the other layers of the net-
work, a differentiable nonlinear least squares optimizer is
needed. Due to its prevalence in conventional BA methods,
the Levenberg Marquardt (LM) algorithm is chosen. LM is
not inherently differentiable due to (1) an if-else termination
strategy on a convergence criteria and (2) modification of
the damping factor based on an if-else decision. These two
problems are solved as follows: (1) a fixed iteration limit is
implemented, removing the need for a convergence check,
and (2) an MLP is trained to predict a suitable damping
layer based on the current residuals of the problem, making
the damping factor selection fully differentiable. LM itera-
tions are done first on the coarse feature maps then worked
down to the finest levels with 5 steps at each scale.

4. Experiments
4.1. Datasets

In this project, we use two datasets. We started with the
KITTI dataset [10], which provides image sequences of a
car-mounted camera as well as lidar point clouds that can
be used as (sparse) ground truth depth information. For the
training / test split as well as the crop of the image region
with meaningful depth ground truth, we follow the work of
Eigen et al. [7]. As there is no ground truth camera pose
provided by KITTI itself, we generate ground truth poses
using LibVISO2 [11]. During the project, we later switched
to the ScanNet dataset [4] as it includes a higher variety of
camera motion. ScanNet is a large indoor dataset with 1,513
sequences in 706 different scenes compromising of 2.5 mil-
lion RGB-D images including camera motion. To reduce
the the required disk space, we downsample the images and
depth to 320x240 pixels. From the image sequences, we
sample 250,000 training and 200 validation pairs, each with
an offset of 15 frames.
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Table 1: Depth Estimation on KITTI

Method Abs Rel Squ Rel RMSE RMSE log
Eigen [7] 0.203 1.548 6.307 0.282
Zhou [27] 0.208 0.1768 6.856 0.283
Wang [23] 0.151 1.257 5.583 0.228

Ours 0.106 0.717 4.266 0.176
BA-Net [19] 0.083 0.025 3.640 0.134

4.2. Depth Estimation

As a first step, we implemented and trained the DRN-
22 [26] backbone and the basis depth map generator based
on a FCRN decoder [15]. As described in the BA-Net pa-
per, we replace the dilations of DRN with convolutions with
strides to reduce the memory footprint. To test both imple-
mentations independent of the BA layer, we use a 1x1 con-
volution to learn the weight vector that combines the basis
depth maps. We initialize the DRN-22 backbone with pre-
trained weights [26] and train the network using adam [14]
with a learning rate of 0.001 and a batch size of 4 on the
KITTI dataset. As proposed in [15] we use the berHu loss.

For evaluation, we provide the common metrics for
depth estimation, specifically the RMSE of the raw and
logarithmically-scaled depth as well as the absolute and the
squared relative difference, which are the mean of the ratios
of the absolute / squared error and the ground truth depth.
As shown in Table 1, our implementation without bundle
adjustment outperforms the baselines, which BA-Net com-
pared with. The performance gap of our implementation
and BA-Net is probably due to the missing BA layer. Qual-
itative results including a selection of basis depth maps can
be seen in Figure B.1. Note that depth estimations in the top
part of the image are incorrect due to the missing ground
truth in that area as the lidar only covers the scene up to a
certain height. During quantitative evaluation those regions
are ignored by cropping the image as suggested in [7].

Joint training of the entire BA-Net architecture proved to
be very unstable. The gradients caused by the SE(3) pose
error conflicted with the one caused by the depth prediction
error, hurting depth predictions. For this reason and the long
down-time of the Leonhard cluster, we have decided to sim-
plify our setup and to focus on the camera pose estimation
first. Also, we transitioned from the KITTI dataset to Scan-
Net as KITTI mostly contains degenerate forward motion
and ScanNet can provide us with a wide variety of motions.

4.3. Camera Pose Estimation with BA-Net

In order to focus on the camera pose estimation, we pro-
vide the bundle adjustment with the ground truth depth and
only optimize for the camera pose. During re-implementing
the relevant network layers in pytorch, we found several
contradictions between the description in the BA-Net pa-

per and their Github repository. First, in the source code
of the feature pyramid constructor, the feature channels are
projected to 128 before concatenating them with the next
level, while in the paper, all feature channels are concate-
nated with the next level and only the output of each level
is projected to 128 channels. The latter results in a much
higher number of feature channels, which noticeably in-
creases runtime. Second, the damping layer in the paper
contains ReLU activations until the end, while the imple-
mentation uses SELU activations for the intermediate lay-
ers and tanh for the last layer. Moreover, the output of the
damping layer in the source code is the norm of the residuals
to the power of (2 + the last activation). We have decided to
generally follow the Github implementation as we assume
that it has a higher chance to be correct. For faster training,
we use the smaller DRN-22 backbone instead of the DRN-
54 backbone. For the training, we use ADAM [14] with a
learning rate of 0.001, a batch size of 1, 30k training itera-
tions to fit the slowest model into the Leonhard 24 h queue,
and the euclidean distance and the relative angle error as
loss function. As baselines, we use the camera pose of the
first camera assuming no camera motion and a photometric
BA with five scales and five iterations for each scale.

Table 2 shows the translation error (euclidean distance
in cm) and the rotation error of the BA-Net implementa-
tion (row 3) compared to both baselines (row 1 and 2). It
can be seen that BA-Net outperforms both baselines by a
noticeable margin. Especially, the translation error is re-
duced compared to the photometric BA, which performs
even worse than using the identity transform. This shows
the effectiveness of using a learned feature metric error in-
stead of the photometric error. The latter results in a highly
non-convex objective function that is difficult to optimize.

Note that, we are not able to directly compare with the
results from the BA-Net paper as they only provide results
on joint BA for pose and depth estimation and their valida-
tion set is not reproducible. The value that is used for filter-
ing validation pairs is based on the photometric error using
the ground truth depth and pose is unspecified and highly
influences the difficulty of the validation set. If a low value
is used, the validation set does not contain occlusions or
lightning changes anymore.

4.4. Improved Damping Factor Estimation

In this section, we further study the influence of the
damping factor layer. First, we implement the damping
layer according to the paper description instead of the offi-
cial code. With the modified damping activation, we had to
reduce the learning rate to 3×10−5, which also becomes our
default learning rate for all of the following experiments.
The paper version with ReLU activations (row 4) outper-
forms the Github version (row 3) for both camera transla-
tion and rotation estimation.
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Table 2: Camera Pose Estimation Performance

variant rot. (◦) trans. (cm)
1 No Camera Motion 9.051 13.54
2 Photometric BA 5.855 14.88
3 BA-Net 4.109 10.57
4 - damping ReLU 3.197 9.319
5 - damping ELU 3.188 9.288
6 - modified damping 2.834 8.592
7 - mod. d. w/o pretrain 3.104 9.434
8 DIC 2.246 7.035
9 - w/o level 5 3.281 10.14

10 - both frames 2.435 7.506
11 - loss all levels 2.473 7.141
12 - w/o min. valid depth 4.82 13.76
13 - Pose Init Net 2.159 5.922
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Figure 2: Camera pose error after bundle adjustment for the
corresponding feature level.

We further propose a damping factor network with two
modifications. First, we replace the ReLU by an ELU acti-
vation (with an offset of 1 for the last layer to prevent neg-
ative values) to have continuous gradients for low damping
values. Second, we use independent damping factor estima-
tion networks for each feature level. This is important as the
residuals that are used as input to the damping layer depend
not only on the quality of the camera pose estimation but
also heavily on the feature level. This can be observed in
Figure B.2a, where the residuals and lambda increase at it-
eration 5 when switching to the next feature pyramid level.
Table 2 shows that the proposed changes further improve
the camera pose estimation performance of BA-Net (com-
pare row 6 and 4). The better utilization of the feature levels
with the independent damping factor estimation, can also be
seen in Figure 2 (compare orange with blue), where the ro-
tation and translation error are plotted after the last iteration
of each bundle adjustment level. In Figure 3, we also vi-
sualize the distribution of the errors over the samples of the
validation set. It shows that the modified damping layer (or-
ange) mostly improves the performance for medium error
cases, while the outliers are mostly unaffected.
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Figure 3: Camera pose error distribution over the validation
set for different architectures.

4.5. Improved Feature Net

Next, we further analyse the feature network. First, we
ablate the influence of the pretraining of the DRN encoder.
The comparison of row 6 and 7 in Table 2 shows that ini-
tializing the backbone with pretrained weights improves the
performance slightly. Second, we compare the U-Net-style
feature network that BA-Net uses with an alternative feature
network (referred to as DIC) using dilated convolutions [25]
but no skip connections. This is inspired by the network
design of the paper ”Taking a Deeper Look at the Inverse
Compositional Algorithm” [16]. The network consists of 5
convolutional blocks, where each block contains three 3x3
convolutions with BatchNorm and ELU activation. The sec-
ond and the third convolution have a dilation rate of 2 and
the second convolution increases the number of channels.
The output channels of the blocks are 32, 64, 96, 128, and
160 respectively. Importantly, we use reflection padding for
the convolution to avoid border artifacts. The output of a
block serves as a feature level for the BA before it is down-
sampled to half the size using average pooling and passed
to the next block. In contrast to [16] we use 5 blocks instead
of 4 and do not sum the channels of a feature level for the
BA. Note that this network is not pretrained. As we have 5
levels for the BA, we reduce the number of iterations to 3.
For the damping layer, we use the modified version from the
previous section. One important aspect due to the downtime
of Leonhard is the reduced training time of the DIC feature
net, which is lower by a factor of two compared to BA-Net.

Table 2 shows that the alternative feature network (DIC,
row 8) noticeably improves the performance compared to
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the BA-Net variants from the previous sections. Figure 3
shows that the improved performance is consistent across
the entire error distribution except some outliers.

For our implementation of the feature net, we have taken
design decisions that differ from the proposed architecture
in [16]. First, we use 5 feature levels instead of 4. Table 2
(compare row 8 and 9) shows that the fifth block provides a
significant performance improvement. Second, in [16] the
feature net is provided with both images. Even though, in
their setting this worked better, in ours it slightly decreases
performance (compare row 10 and 8). The same is the case
for applying the loss to the intermediate camera pose esti-
mations of the BA after each feature level (row 11). Third,
we want to mention an implementation detail that was cru-
cial for our setting. In order to train the network also for
camera translation, we had to filter points that were closer
than 50 cm to the camera. Table 2 row 11 shows the results
without that filtering. The camera translation is barely opti-
mized in this case. This happens because most of the terms
in the projection jacobian are inversely proportional to the
depth of the 3d points in the target camera frame, causing
the points close to the camera to overpower the contribution
of the points that are further away. Note that in the Scan-
Net dataset there are many points that are classified as in-
valid and have zero depth, additionally there are some noisy
depth estimates which contain points that also hurt the opti-
mization process.

4.6. Pose Initialization Network

The initial pose estimate is crucial for the success of the
BA. So far, we followed BA-Net and used the identity as
initialization. To further improve the performance of the
camera pose estimation, we propose to learn the pose ini-
tialization using a small network consisting of three con-
volutional layers with 3x3 kernels on top of the concate-
nated last feature levels of both images. Table 2 shows that
the pose initialization network further improves the trans-
lation error by 1 cm. Surprisingly, Figure 2 shows that the
improved translation estimation is not due to a better first
estimate but a better convergence in later BA levels. We as-
sume that the pose initialization network learns to predict a
pose that is not necessarily very accurate but rather results
in a better BA optimization. This hypothesis is also qualita-
tively supported by Figure B.2c.

5. Conclusions
The re-implementation of [19] proved to be a challeng-

ing task due to lack of a complete open-source implemen-
tation and the discrepancies within the article and the avail-
able code. Additionally, the training of neural network that
back-propagates gradients through a Levenberg-Marquardt
optimization module was found to be really unstable and
it requires careful exploration of the architecture configura-

tion, hyperparameters and training data to be able to achieve
reasonable results in the optimized predictions. On a simpli-
fied setup, in which we use the ground truth depth and only
optimize the camera pose, we show that our reimplemen-
tation of BA-Net, including a differentiable bundle adjust-
ment layer, significantly outperforms photometric BA. We
show that BA-Net can further be improved using a simpli-
fied feature network, a layer-wise damping factor network,
and a pose initialization network.

6. Work Distribution and External Resources
Work Distribution

• Adrian: Scannet data loader + Depth and camera jaco-
bian calculations for LM + BA layer implementation +
CI and testing

• Lukas: Kitti data loader + Implementation DRN,
FCRN, FPN + Setup training framework + Depth esti-
mation on Kitti + Training of feature pyramid for cam-
era pose estimation + Ablations on damping layer, fea-
ture net, loss function, pose init net + Visualizations

• Tommaso: Ground truth estimation of the Kitti camera
poses using libviso2 [11] + Leonhard training setup

• Josè: Implementation of learned damping factor layer
+ Depth and camera jacobian calculations for LM +
BA layer implementation + Setup training framework
with pytorch-lightning + Extensive unittesting of jaco-
bians and forward BA implementation

External Source Code For our implementation, we have
used source code from several sources. Specifically, for
the data loading of Kitti, we used the data loader of mon-
odepth21 as template and for the generation of the ground
truth poses, we used libviso22. To convert the implementa-
tion of the network components of BA-Net from tensorflow
to pytorch, we adapted following implementations of DRN3

and FCRN4. In particular, we matched those implementa-
tions with the described changes in the BA-Net paper and
the tensorflow code fragments56. For the DIC feature net,
we have used7 as starting point. We also utilized some ge-
ometry related helper functions provided by our supervisor
Paul.

1https://github.com/nianticlabs/monodepth2/tree/
master/datasets

2http://www.cvlibs.net/software/libviso/
3https://github.com/fyu/drn/blob/master/drn.py
4https://github.com/dontLoveBugs/FCRN_pytorch/blob/

master/network/FCRN.py
5https://github.com/frobelbest/BANet/blob/master/enc.

py
6https://github.com/frobelbest/BANet/blob/master/dec.

py
7https://github.com/lvzhaoyang/

DeeperInverseCompositionalAlgorithm/blob/master/code/
models/algorithms.py#L119
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A. Residual and Jacobian Derivations
For feature-metric BA, the residual matrix can be defined component-wise like in Equation 5:

efi,j(X ) = Fi(π(Ti,ReLU(wTBj) · qj))− F1(qi,j) (7)

where Bj is the j-th column of B.
The jacobian of the residual E (X ) with respect to the optimization variable camera transformations can be derived using

the chain rule as follows:

JT =
∂E

∂T
=
[
∂F
∂u

∂F
∂v

]
Jcamera (8)

where ∂F
∂u and ∂F

∂v are the feature partials with respect to the pixel coordinates u and v, and Jcamera is the jacobian of the
projection from 3D scene coordinates. For our purposes, we use the definition that Ti = [tiωi] where ti is the translation of
the transformation and ωi is the rotation represented in angle axis form. The feature partials are approximated using discrete
finite differences on the height and width dimensions of the feature maps.

The camera jacobian Jcamera is the jacobian of the point projection function π with respect to the camera pose parameters
T . The derivation can be found in [2] and the result is:

Jcamera =
∂π

∂T
=

 fx
pz

0 − fxgx
g2
z

−fx gxgy
g2
z

fx(1 +
g2
x

g2
z
) −fx gy

gz

0
fy
pz
− fygy

g2
z
−fy(1 +

g2
y

g2
z
) fy

gxgy
g2
z

fy
gx
gz

 (9)

The point depth jacobians can be derived in a similar fashion:

Jw =
∂E

∂w
=
[
∂F
∂u

∂F
∂v

]
Jdepth (10)

where Jdepth is the jacobian of the projection function with respect to the depth basis coordinate vector w. The main
derivation is also in [2] with a minor modification to account for our definition of the point depth as a matrix vector multipli-
cation

Jdepth =
∂π

∂w
=

[
fx
gz

0 −fx gx
g2
z

0
fy
gz
−fy gy

g2
z

]
RBj (11)

Assuming that the overall parameter vector is defined as X = [T1, . . . , TNi
, w], the final jacobian can be written as:

J(X ) =

 JT1

. . . Jw
JTNi

 (12)
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B. Qualitative Examples

Figure B.1: Qualitative examples of the depth estimation network without bundle adjustment as well as their basis depth
maps.
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(a) BA-Net

(b) DIC

(c) DIC + Pose Initialization Network

Figure B.2: Camera pose estimation on example 1 for different architectures. The image pair as well as the corresponding
feature levels (average over all channels) as well as the residuals are shown. We also plot the camera poses during the
optimization (bottom left). The yellow pose is the initialization, the black one the poses during the BA optimization, the
red one the final prediction, and the green one the ground truth. In the images, a random point cloud is projected into the
images. Here the ground truth is visualized in white instead of green for better visibility. The red points in the feature levels
correspond to the predicted pose after the BA for the corresponding feature level.
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(a) BA-Net

(b) DIC

(c) DIC + Pose Initialization Network

Figure B.3: Camera pose estimation on example 2 for different architectures. See Figure B.2 for further explanations.
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(a) BA-Net

(b) DIC

(c) DIC + Pose Initialization Network

Figure B.4: Camera pose estimation on example 3 for different architectures. See Figure B.2 for further explanations.
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