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Abstract—Generalization in reinforcement learning refers to
an agent’s ability to perform outside of the environment it was
trained in. Reinforcement learning (RL) algorithms are typically
both trained and tested on fixed environments, which can result
in over-fitting to the system under analysis. Since model-based
RL (MBRL) methods attempt to learn the underlying system
dynamics, they may perform better in generalization tasks
compared to model-free methods, which directly learn a policy.
Probabilistic Ensembles with Trajectory Sampling (PETS) [1]
is a MBRL algorithm that is both sample efficient and
high-performing on standard benchmark tasks. In this paper,
we study how well PETS is able to generalize outside of
the parameters it was trained on using a recently proposed
generalization standard and modifiable gym environments from
[2]. We find that PETS performs lower on these benchmarks
compared to current state of the art model-free methods, and
there is no apparent benefit of a standard model-based algorithm
in terms of performance under model mismatch.

I. INTRODUCTION

In reinforcement learning, an agent learns how to solve a
specific task without having any prior information about the
task itself or the environment it operates in. The agent explores
the environment and receives a response, i.e. a reward, that
indicates the quality of an action given the system state. Over
time, the agent learns which actions are required to solve the
assigned task. A great portion of the literature in reinforcement
learning is concerned with developing algorithms that enable
an agent to learn faster, more efficiently and improve scores
on common benchmark tasks. However training an agent to
perform a task in an environment and assessing the agent’s
performance by testing it on the same task and environment
can result in the model overfitting to the fixed environment
parameters. This is in contrast to one of the most important
goals in machine learning: achieving generalization of a
trained model on previously unseen test data.

Due to the inherent complexity of the problem, it remains
a challenging topic in the field that is being approached
with different techniques. Recently, Packer et al. [2] assessed
the generalization capabilities of model-free reinforcement
learning algorithms on environments that randomize the
parameters of the physical system being simulated. In this
paper, we study the generalization capabilities of model-based
reinforcement learning algorithms following the same testing
methodology as Packer et al [2]. In particular, we focus
on using probabilistic ensembles with trajectory sampling
(PETS) on classical control tasks, to determine if using
a model-based approach is able to generalize better than
model-free. Our implementation of PETS shows a lower level
of performance than model-free benchmarks, and the scores
in all generalization tests show no implicit generalization
advantage over model-free approaches.

II. RELATED WORK

Reinforcement learning has achieved various successes in
the last decade, with recent notable breakthroughs helping
the field to gain increased attention. DeepMind developed
increasingly capable versions of it’s AlphaGo [3] algorithm
that was able to beat one of the world’s best players
in the complex board game Go, with followup improved
versions training in far less time by playing themselves in
an adversarial manner [4]. OpenAI created an open source
toolkit for RL research known as the OpenAI Gym [5],
which includes ATARI games, classic control tasks, and more
complex locomotion tasks. This has become one of the de facto
standards for benchmarking RL algorithm performance, and
has helped open the field up for accessible algorithm testing.

Quite naturally, researchers have started to specifically
address the generalization issue in reinforcement learning.
Nagabandi et al. [6] take a meta-learning approach by learning
online adaption for changes to the agent’s environment. This
is done by learning a prior for the dynamics model and rapidly
updating the model with recent data after every time step
to adapt to the local context. Rajeswaran et al. [7] propose
EPOpt, an algorithm that uses ensembles of other RL models
and adversarial training to create policies that are robust to
environment changes. A robust policy is found by sampling
trajectories from a collection of possible models among the
environment parameter distribution, and then using policy
gradient optimization to find a single policy that fits the
different model trajectories.

Researchers in the area have applied different
methodologies to assess the generalization capabilities
of their models, which made standardized comparisons
between different models very challenging. Witty et al. [8]
provide definitions for dividing a state-space into on-policy,
off-policy, and unreachable states in order to test repetition,
interpolation, and extrapolation performance. Trials using a
state of the art DQN network show poor generalization ability
to minor changes to the environment. Packer et al. similarly
propose assessing generalization performance by looking
at interpolation and extrapolation ability, but also explicitly
define metrics for scoring these abilities on a modified
set of OpenAI Gym environments. Model-free methods,
including actor-critic and proximal policy optimization,
are benchmarked, where they find “vanilla” RL algorithms
outperformed algorithms specifically designed to excel in
generalization, like the previously mentioned EPOpt in [7].
These previous efforts have focused on assessing model-free
reinforcement learning algorithms, which are typically more
expressive than model-based algorithms, in that they achieve
better performance on common benchmark tasks. The



procedure proposed by Packer et. al is what we follow in this
paper to analyze a model-based approach.

Wang et. al [9] recently completed a comprehensive
benchmark of various MBRL algorithms, where the
performance of 18 different algorithms was analyzed in a
unified setting of standard OpenAI gym environments. One
of the highest performing algorithms in this study used
probabalistic ensembles with trajectory sampling, or PETS,
proposed by Chua et al [1]. Like other MBRL algorithms,
PETS is more sample efficient in comparison to its model-free
counterparts; however, it claims to also offer similar levels
of performance. In this paper, we contribute to the research
of generalization in deep reinforcement learning by assessing
the generalization capabilities of PETS on classical control
tasks. The experiments are conducted within the framework
suggested by Packer et al. which allows us to compare
the generalization performance of PETS to the model-free
algorithms tested in their work.

III. MODELS AND METHODS

Model-based RL consists of learning the dynamics of an
environment using previously acquired observations. This is
in contrast with model-free RL, where the goal is to learn a
policy. More precisely, let S denote the state space and A the
action space. In MBRL one tries to find an approximation f̂
of f : S × A → S. Typically, the environment dynamic is a
stochastic process so f is actually a probability distribution
over the possible states. In our case, f̂ is an ensemble of
probabilistic neural networks.
f̂ is used in conjunction with a model predictive controller

(MPC) to decide the next action. A series of possible action
sequences are generated and rolled out using the learned model
to predict the potential next states of the system. Whichever
action sequence results in the highest reward is deemed the
best policy, and the first action is performed. This is then
repeated at every time step.

A. Models

The ensemble f̂ consists of k feed-forward neural networks
f̂i. The output of f̂ is the mean of the outputs of the k neural
networks. Each of the neural networks takes the current state
st ∈ S as input, together with an action at ∈ A. In case the
action space is discrete, the input action is transformed into
a one-hot encoding. Our implementation of PETS consisted
of an ensemble size of 3 feed-forward neural networks. An
ensemble size of 3 was sufficient for the fairly simple classic
control tasks that were the subject of our analysis. Each
network was made up of 3 hidden layers and 500 units per
layer. The SiLU activation function [10] was used as suggested
in the original PETS paper.

We tested two kind of neural networks: deterministic
and probabilistic. The deterministic neural network typically
outputs the expected st+1 and uses the standard L2 loss
for training. The probabilistic neural network instead outputs
a probability distribution defined by the mean, µθ, of the
expected state, st+1, and its covariance matrix, Σθ. We assume
a Gaussian distribution and a diagonal covariance matrix,

resulting in an output layer with two neurons per observed
state: one representing the mean, and one representing the
variance. This network uses a Gaussian loss function:

lossN (θ) =

N∑
n=1

[µθ − sn+1]TΣ−1θ [µθ − sn+1] + log det Σθ

(1)

This acts like a weighted L2 loss, in that it punishes
prediction errors for states that have lower uncertainty more,
while also encouraging low variance values.

In our implementation, f̂i actually computes the difference
∆t+1 = st+1 − st instead of st+1 directly. During training,
these state differences are used as targets for the network. We
can then simply compute st+1 = st+∆t+1 after receiving the
difference output from the network. Computing delta training
targets was originally suggested by Deisenroth et. al [11]. This
technique encodes an implicit prior on the prediction results,
such that the system state should remain constant in the case
of zero value outputs, instead of suddenly dropping all states
to zero.

B. MPC & Trajectory Sampling

Model predictive control is a control method that attempts
to find the optimal action for the current time step using a
model of the system to predict possible state trajectories. All
future states are assessed by some loss or reward value, and
the optimal state trajectory is selected as the one achieving the
best score either in terms of minimizing the loss or maximizing
the reward. Only the first action resulting in the optimal state
trajectory is applied, and then the process is repeated at the
next time step, this is called receding horizon control. This
results in a closed loop control system that can account for
disturbances from the proposed trajectory.

The PETS algorithm implements an MPC style controller
using a random sampling shooting method, described in
Algorithm 1. At each time step, a number of action sequences
of fixed horizon length are created by sampling independently
and uniformly from all possible actions (both for discrete
or continuous spaces). Each action sequence is then used to
predict state trajectories using the learned system dynamics
model f̂ and propagating it forward. The action-state sequence
that results in the state trajectory with the highest reward at
the end of the horizon is chosen, and the first action is applied
to the agent. The reward function r is engineered by the user
and depends on the environment. For example, the Pendulum’s
reward function r gives a high score for keeping the pole in
a vertical position. 1

C. Training

The training is a repeated process which consists of 1)
generating new data and 2) training the models.

The replay memory D = {τi}i consists of trajectories

τi = ((s0, a0, r0), (s1, a1, r1), . . .) (2)

1A complete list of reward functions used for different gym environment
can be found in Appendix A of [9].



Algorithm 1: MPC
Input : Current state s ∈ S, horizon h, samples n,

reward function r, discount factor γ
Output: action a ∈ A

1 for i← 1 to n do
2 actionsi ∼ U(Ah)
3 rewardi = 0
4 statei,0 = s
5 // Rollout
6 for t← 1 to h do
7 statei,t ← f̂(statei,t−1, actionsi,t−1)
8 rewardi ← rewardi + γt · r(statei,t)
9 end for

10 end for
11 i∗ ← arg maxi rewardi
12 return actionsi∗,0

which are generated using the MPC policy in closed loop. As
the model improves, the agent is able to explore spaces closer
to the goal state.

Each model f̂i is trained on a bootstrapped dataset D̂i from
the replay memory D, which ensures that the networks are
different but follow the same statistics. To further improve the
training, the dataset D is normalized.

D. Generalization

We assess the generalization of our solution by analyzing
the performance of a model tested in an environment with
different parameters than it was trained in. Packer [2] provides
modified OpenAI gym environments that generate randomized
parameters for the physical properties of the simulated
environment. For example, in the CartPole environment, three
parameters can be varied: the pole length, the pole mass,
and the push force magnitude 2. The environment can be
launched with three parameter settings: default (D), random
(R), or extreme (E). Default maintains the original fixed
parameters, while random and extreme uniformly sample
the parameters from different continuous value ranges. The
random distribution contains feasible parameter values in
the neighborhood of the default values, while the extreme
distribution contains drastically different values that represent
edge cases. This provides us with different combinations of
training and testing environments, which will be referred to as
two-letter abbreviations of the training setting followed by the
testing setting (e.g. training on default and testing on default
would be DD, while training on random and testing on extreme
would be RE).

Along with providing the open source modified
environments, Packer [2] also proposes standardized testing
metrics that can be used to create simple scores describing
the different levels of generalization ability. These scores are
based on the percentage of successful episodes out of all
tested episodes, where each environment has a unique success
function:

2A table of each environments modifiable parameters and the different
ranges can be found in Table 1 of [2].

• CartPole: balance for at least 195 time steps

• Acrobot: swing the end-effector of the links to the fixed
height within 80 time steps

• Pendulum: keep the pendulum within π/3 radians of
either side of the vertical for the final 100 time steps
of a 200 time step episode

This then allows the creation of three separate scores based
on episode success rate in different configuration of training
versus testing:

• Default: success percentage on DD

• Interpolation: success percentage on RR

• Extrapolation: geometric mean of the success percentages
on DR, DE, and RE

While the Default score acts as the baseline for standard
model performance, the Interpolation score shows how well
the agent can generalize after being trained and tested in
similar randomized environments. Finally, the Extrapolation
score shows how well the agent performs when testing it in
environment configurations it has never encountered during
training.

IV. RESULTS

Generalization scores were generated for three different
classic control tasks using our implementation of the PETS
algorithm. The modified environments of CartPole, Acrobot,
and Pendulum were trained and tested according to the
configuration described in the previous section. The final
scores can be seen in Table I, and were the average of five
runs, each measuring success over 1000 episodes. The agents
were trained for 20000 total time steps, in 1000 time step
increments of data generation.

While PETS was able to generally “solve” all three tasks,
there was wide variation in the generalization scores obtained
using the success metrics. The CartPole environment was
the easiest to solve, with the agent able to adjust to normal
and extreme deviations in environment parameters with the
exception of our probabilistic network in the extrapolation
setting. Towards the end of the RE episodes for these tests,
the network adjusted to extreme variations that negatively
affected model accuracy and resulted in a zero score. Since
extrapolation uses a geometric mean of DE, DR, and RE, the
extrapolation score becomes zero for that run. The Acrobot
and Pendulum proved harder to obtain the level of performance
set by the proposed success metrics, especially outside of the
default test setting. There is no noticeable difference between
using probabilistic networks versus deterministic networks for
these three environments.

Similar trends between generalization scores can be
seen between our model-based method and the model-free
algorithms. Default scores remain the highest as there is
no deviation in parameters during testing or training, while
Extrapolation scores are the lowest, as the parameter ranges
being tested have never been seen during the respective
training episodes.



Default Interpolation Extrapolation

PETS-P PETS-D A2C PPO PETS-P PETS-D A2C PPO PETS-P PETS-D A2C PPO

CartPole 100.0 100.0 100.0 100.0 100.0 99.86 100.0 100.0 51.71 94.19 93.63 86.20
Acrobot 59.96 61.50 88.52 87.20 36.58 30.00 72.88 72.78 17.44 16.53 66.56 64.93

Pendulum 96.28 95.86 100.0 0.0 82.20 87.06 99.86 31.80 70.86 71.20 90.27 0.0

TABLE I: Generalization scores of our implemented PETS agent, including both probabilistic (PETS-P) and deterministic (PETS-D) ensemble
results, alongside the model-free algorithm benchmarks of A2C and PPO as taken from [2]. Scores presented are the average of five test
runs for each of the three gym environments tested.
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Fig. 1: The average episode reward obtained using the PNN network
and DNN network on Acrobot. Rewards are shown in both Default
training setting and Random training setting. We plot the average over
3 experiments of the average episode score evaluated every 1000 time
steps.

Figure 1 shows the progression of average reward values
taken from evaluation periods performed throughout training
in both default and random parameter settings for Acrobot
(Appendix A contains similar CartPole and Pendulum graphs).
It can be seen that the PETS algorithm is able to learn
each task quickly, confirming the sample efficiency of MBRL
methods. Again there is no noticeable difference between
PNNs and DNNs for these environments. However the
performance then plateaus at a level that does not improve with
additional training data. Training with fixed default parameters
results in a higher performance plateau than training on
randomized parameters.

Figure 2 shows the model prediction error (MPE) which
quantifies the error occurring during the rollout. This metric
is useful to evaluate the quality of the predicted state with
respect to the horizon length and provides information about
the quality of the model itself. If the MPE does not improve,
it implies that the model output is not precise and this error
is accumulated over the horizon length. Hence, using a longer
horizon might not provide better results. Intuitively, as the
model quality improves, the MPE is reduced. At the same
time, the model explores more states closer to the goal state,
therefore the MPE is not guaranteed to improve with the
repetitions.
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Fig. 2: The model prediction error at horizon h corresponds to mean
squared error between the true observations and the state computed by
rolling out h steps using the trained model and the action sequences.
The grey lines correspond to the MPE of the individual models, while
the colored lines correspond to the ensembles. This plot has been
computed on the CartPole environment.

V. DISCUSSION

Our results show that there is no improvement in
generalization performance for a model-based algorithm like
PETS in comparison to the model-free algorithms. Although
our initial hypothesis was that learning the underlying system
dynamics would help a model-based approach maintain its
performance under environment parameter changes, PETS
demonstrated no advantage when tested in this generalization
assessment.

It’s generally known that model-free algorithms are able
to score higher than their model-based counterparts given
enough training episodes, as demonstrated more extensively in
[9]. Although PETS claims to achieve similar performance to
model-free algorithms, our findings show that it still plateaus
at a level below model-free. PETS was successful in solving all
the environments, but since the success metrics were originally
derived based on model-free performance (e.g. 80 time step
requirement for Acrobot), it performed worse in all three
generalization scores. Compared to the Default scores, PETS
Interpolation and Extrapolation scores actually fell further than
A2C’s and PPO’s scores did (with the exception being that
PPO tested in [2] was not able to solve Pendulum in Default
/ Extrapolation configurations).

For the simple environments tested in our experiments,
there is no noticeable benefit in using a probabilistic network



over a deterministic network. Both networks learn all tasks
within 2000 time steps, and the Interpolation and Extrapolation
scores are similar between the two types of networks. As
seen in the original PETS paper, a significant improvement in
a probabilistic ensemble over a deterministic ensemble only
begins to show when learning more complex environments
such as the MuJoCo Half-Cheetah.

Increasing the MPC horizon should allow the PETS
algorithm to predict further into the future, and thus better
select the optimal current action. However, the predictions
become more susceptible to compounding model error, and
can result in long horizon trajectories that are less reliable
than short horizon trajectories. A larger MPC horizon also
also greatly increases the computation time when running the
algorithm, and can cause it to no longer operate in real-time
when stepping through the environments (real-time meaning
that the time required for action selection is less than the
default time step of the environment).

Model-based reinforcement learning requires a user
specified reward/cost which differs from the OpenAI gym
environment reward. This hand-engineered reward function
embeds a bias into the MPC policy causing more than sub
optimal behavior in certain systems. While this has not been
proven empirically, it is a still an open question that remains
unanswered because it is incredibly difficult to set a metric
with respect to the “true” reward function that allows us to
quantify this bias.

VI. SUMMARY

Our work analyzed the generalization of a particular
method of model-based reinforcement learning. We confirmed
in this setting that although a learning agent requires far
fewer iterations to solve the task at hand compared to
model-free methods, it still falls short of model-free algorithm
performance in each of the generalization assessments.
Based on intuition, PETS would have better generalization
capabilities thanks to its decoupling of the control policy from
the learned system dynamics, however our results showing the
under-performance on these benchmarks demonstrate that this
is not the case.
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VII. APPENDIX

A. Training Rewards
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Fig. 3: The average episode reward obtained using the PNN network and DNN network on Pendulum. Rewards are shown in both Default
training setting and Random training setting. We plot the average over 3 experiments of the average episode score evaluated every 1000 time
steps.
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Fig. 4: The average episode reward obtained using the PNN network and DNN network on CartPole. Rewards are shown in both Default
training setting and Random training setting. We plot the average over 3 experiments of the average episode score evaluated every 1000 time
steps.
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