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Abstract: Today, sampling based motion planners (SMBP’s) suffer from the use
of uninformative sampling distributions that rely on heuristics designed by roboti-
cists to be effective. Now, with recent work in deep generative models, complex
and high-dimensional sampling distributions can be learned in an unsupervised
fashion from data generated by the target distribution. We demonstrate the mar-
riage of the two concepts: using a generative model as a sampling distribution for
an SBMP. We implement an open source pipeline for training and inference based
on standard open source motion planning tools that is capable of learning from
previous plans to improve the results on new planning problems. Furthermore we
extended the approach to incorporated learning distributions from unstructured
conditional data.
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1 Introduction

Sampling based motion planning has been a successful algorithmic technique in solving motion
planning problems in high dimensional spaces. However, SBMP uses uninformative or hand tuned
priors that yield sub-optimal behavior in the exploration process of incremental SBMP. Several tech-
niques have been used to overcome this limitation, mainly falling under the umbrella of informative
sampling and learned sampling. The former tackles the trajectory refinement process, meaning that
once a solution to the SMBP problem is found, informative sampling takes care of exploiting the
space structure to find lower cost solutions. Learned sampling tackles the problem of finding a solu-
tion in fewer sampling steps and with lower cost but it lacks generalization due to being trained with
hand crafted, artificial representations of the workspace. Ichter et al. [1] proposes a general way
to learn sampling distributions with a variant of a Variational Autoencoder (VAE) that conditions
on the information of the planning problem, however this method suffers from the aforementioned
problem, e.g. hand crafted obstacle representations.

Statement of contributions: In this project we extend the work done in Ichter et al. [1] by learning
a planning distribution from unstructured data: distance fields. Additionally we provide an open
source implementation of the proposed neural network with a C++ deployment pipeline that allows
direct use of the learned sampler using OMPL [2].

2 Related Work

Learning sampling distributions can be formulated in different ways. Qureshi and Yip [3] uses a
neural network to sequentially sample the next states for a SMBP. Unfortunately, this yields high
inference times which limits real-time usage. Zhang et al. [4] proposes a reinforcement learning
based rejection sampling approach that learns to reject unimportant samples generated by a uniform
distribution, thus, more efficient exploration of the state space.

This project is mainly based on the work by Ichter et al. [1], which proposes a Conditional Vari-
ational Autoendoder (CVAE) to directly map the problem information to a distribution to sample
states from. Several extensions to [1] have been proposed, for example Kumar et al. [5] proposed
an algorithm to efficiently identify narrow passages from the workspace for training a CVAE. All
of these methods used a structured representation of the workspace to condition the CVAE, which



renders the end sampler unusable in environments where obstacles can not be simply represented by
boxes in space. Therefore, we propose to use a distance field as a representation to learn to avoid
obstacles.

3 Learning Sampling Distributions

In machine learning, generative models are a class of algorithms that are used to learn distribu-
tions of high dimensional data. In general they can be classified into 4 main types: Autoregressive
Models, Generative Adverserial Networks (GAN’s) [6], Variational Autoencoders (VAE’s) [7] and
Normalizing Flows [8]. Each class of model aims to learn a distribution that captures the important
statistical properties of the training data. Using these learned distributions, new meaningful data
samples can be generated from the trained networks. Variational Autoencoders are able to learn a
map from a lower dimensional latent distribution to an explicit representation of the data distribution,
which makes them suitable to generate samples for high dimensional spaces.

VAE’s aim to model the training data by maximizing the Evidence Lower Bound (ELBO) loss. In
essence, the VAE is an Autoencoder with a regularization term that aims to force the latent variable to
take the distribution of a lower dimensional isotropic Gaussian. This regularization enables decoding
Gaussian latent variable samples into samples from the distribution of the training data. Conditional
Variational Autoencoders (CVAE’s) [9] are an extension of the VAE that learns the distribution
p(x|z, C), i.e. the distribution of samples conditioned on a separate variable C. Generating samples
from the network then requires C, a condition variable, and z, a latent space sample.

The work of Ichter et al. [1] uses a vanilla CVAE to generate samples, however reproducing the
work exactly does not yield good results in the variance of samples drawn. With enough tuning,
the results of [1] might be reproducible, but we chose to modify the network and loss to improve
the variance of the generated samples. Specifically, we modify the output of the CVAE network to
produce two results: the mean, µx, and standard deviation, σx, of a Gaussian distribution.

The output distribution of a normal CVAE is assumed to have a fixed, diagonal covariance matrix,
i.e. p(x|C, z) = N (µ(z), I) . We instead leave the variance terms to be learned by the decoder as σx.
Therefore the CVAE reconstruction loss is modified to be the negative log likelihood of a normal
distibution with a learned variance. i.e. p(x|z, C) = N (µ(z), σ(z)). A diagram of the CVAE
architecture can be seen in 1. As is typical in VAE models a multiplicative weight, β, is introduced
to the KL divergence term. β controls the tradeoff between the KL loss and the reconstruction loss.
The final loss can be seen in Equation 1.

Lrecon = Eq[− log p(x|z, C)]− βDKL(q(z|x,C)||p(z|C)) (1)

Figure 1: CVAE architecture with mean and variance of x on the decoder.

3.1 Unstructured Environments with Distance Fields

So far, obstacles have been represented in an exact structure. Given a fixed number of obstacles,
the exact parameters of the obstacles are used as a condition for training and inference. This is
inflexible as it requires the number of obstacles to be set a priori and does not easily allow for
variable obstacle shapes. In order to overcome this limitation of [1] we propose to use distance
fields, a common robotics map representation, as a condition variable. Distance fields are a dense
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representation of the environment, where each grid cell contains the distance between it and the
nearest occupied cell. Distance fields can represent any number of obstacles in a space with a tunable
grid resolution. Unfortunately, distance fields can be quite large depending on their resolution and
the size of the environment they represent. Given our problem setup, our condition variable is
already significantly larger in dimension than the samples to reconstruct. Using a distance field
increases that difference by an order of magnitude, making the problem much harder for a the
network to learn. To mitigate this problem, we use a convolutional encoder to reduce the dimension
of the distance field to an informative enough minimal representation. We found that using the
weights from a convolutional auto-encoder that was trained for map reconstruction was not ideal for
use as a condition in our CVAE which leads us to believe that a latent space trained for reconstruction
is not informative enough for learning planning related tasks. Jointly training the distance field
encoder and CVAE yielded the best results for our problem and does not come with significant
training time or convergence overhead.

3.2 Implementation details

The final neural network architecture consisted of a convolutional encoder that generates a condi-
tional vector. Each convolutional block consisted of increasingly deeper channel dimensions and
downsampling using a stride of 2, additionally it has a ReLU activation function. After the convo-
lutional blocks, the output features get flattened and fed into a fully connected layer that outputs a
conditional variable. The encoder of the CVAE uses only fully connected layers and its input is the
concatenation of the encoded map, the start/goal states and the sample from the training data. The
decoder gets the concatenation of a sample from the latent distribution, the embedding from the map
encoder and the start/goal states. In Fig. 2, we provide a detailed description of the learned sampler.

Training data consisted of pairs of condition data and samples drawn from the optimal path found
by an optimal SMBP (RRT* [10]). For generating the training data, we used OMPL to generate
planning problems with fixed sized square obstacles. Obstacles were placed on a grid, and start and
goal states were sampled from free space within the grid. Gradient descent by grad student was
employed to tune the hyper-parameters. The main hyper-parameters to tune are the batch size and β
term of the KL loss. The decoder was deployed in OMPL and can generate samples for any SBMP
in the library. GPU acceleration enables rapid inference for generating large numbers of samples.

4 Experimental Results

We implemented two experimental scenarios to both train and test our models on. Both represent
the environment as a set of square obstacles uniformly sampled from a grid. The first example is a 2
dimensional geometric motion planning problem. The second setup is a non-holonomic kinematic
car model. The models seemed to begin stable training of the KL loss early on training but the
overall loss takes a lot of time to reach a plateau, as shown in Fig. 3.

We evaluate the usefulness of our learned sampler using two metrics: planning success rate and ratio
between cost of the solution found for a uniform sampler versus the learned sampler. We evaluated
this on two types of robots: a 2 state geometric point robot and a 3 state kinematic robot.

It is immediately obvious in Figure 4 and 5 that the learned sampler had little to no effect on the
result of planning. This is a somewhat intuitive result because the 2 dimensional geometric problem
and even the 3 state non-holonomic problem can easily be solved by a SBMP using a uniform
distribution. Difficult problems such as multi jointed arms are where the results should shine.

These results are similar to those of [1] and allow some confidence that the distance field obstacle
representation can be used successfully. We can visually examine the results of the sampler by
sampling many points in latent space and passing them through the encoder. Shown in Figure 6,
blue points represent the mean of the decoded distribution and red points are sampled from the full
generated distribution.

One problem that we’ve observed and is discussed in [11] is that even though the training data cannot
come close to obstacles, the sampling distributions have a high probability of sampling points that
are very close to obstacles. This is a problem because most collision checkers include an increased
radius around each state to maintain a safety margin.
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Figure 2: Complete architecture of the learned sampler with a distance field encoder

4.1 Latent Space Interpolation

We found that in nominal cases the latent space holds useful structure that maintains spacing in
the sample space. To see this, we linearly interpolate points in latent space between the encoded
versions of the problem start and goal states. The interpolation has some failure cases such as
Figure 7b. When the problem is ambiguous, i.e. there are multiple equal cost solutions, the network
is not able to represent the multimodal nature of the desired sampling distribution and latent space
interpolation fails.

5 Conclusion

We developed a pipeline for learning generative models for state sampling for use in SBMP’s.
Though the results did not improve on the baseline, we demonstrated that an unstructured repre-
sentation of the obstacles in the workspace could be successfully used to learn to avoid obstacles
in sampling. Based on the results of other similar works, we are confident that the method pre-
sented will scale up to larger, more complex problems with high dimensions, self collisions and full
dynamics. Furthermore, learning these sampling distributions from unstructured data allows this im-
plementation to scale to real robotics environments where the main source of workspace knowledge
is signed distance fields.
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Figure 3: Reconstruction vs KL tradeoff in the geometric 2 state problem.
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Figure 4: Geometric Planning Result

5.1 Future Work

Many directions can be taken to improve the methods presented. First, the SBMP’s that are used have
no way to pass information about the state of the planning graph that has been built to the learned
sampler. This could greatly accelerate finding solutions to problems by reducing the wastage of
samples that are far from the current graph. For example, in an RRT, sampling near the goal is not
useful in the beginning. This could also be tackled by a Recurrent Neural Network (RNN) that has
a notion of time. In SBMP’s, the order of samples can be important, which could be learned by
the recurrent nature of RNN’s. In addition, reducing the number of samples that are drawn from
obstacle regions would greatly increase the time efficiency of the problem. Especially when the
optimal path goes close to obstacles, many generated samples are within obstacles. Adding a loss
that penalizes colliding samples would help to move the distributions away from occupied spaces.
Finally, proving the results on more complex robots would validate the results in a way that cannot
be done on smaller and easier problems.
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Figure 5: Kinematic Car Result

(a) Nominal Case Generated Distribution (b) Ambiguous Case Generated Distribution

Figure 6: Distributions generated by learned model, on the right we can see that the model struggles
with ambiguous planning scenarios.

(a) Successful Interpolation (b) Failed Interpolation

Figure 7: Interpolation between start and goal states.
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